
PDF generated on: 2025-07-02 10:36:18 AEST

https://www.tasc.tas.gov.au/

ITC315118

2018 — 2023

NO

NO

YES

Computer Science

LEVEL 3 15
TCE CREDIT POINTS

COURSE CODE

COURSE SPAN

READING AND WRITING STANDARD

MATHEMATICS STANDARD

COMPUTERS AND INTERNET STANDARD

This course was delivered in 2022. Use A-Z Courses to find the current version (if available).

Computer Science involves the study of the processes underlying the storage, transformation and
transfer of data

It includes both the theoretical study of algorithms and the practical problems involved in implementing them, usually via a programming

language.

Course Description

The course consists of three major content areas plus a Computing Option which relies on knowledge from those content areas.

AREA 1: PROBLEM SOLVING AND PROGRAMMING

This content area includes algorithm design and problem solving, efficiency and reliability, the Software Development Life Cycle, principles

of programming practice and style including documentation, Object-oriented programming in the Java language and Human Computer

Interaction and interface design.

AREA 2: COMPUTING FUNDAMENTALS AND COMPUTER LIMITATIONS

This content area includes representation of data at machine level, and data types, formal logic and logic laws and principles of machine

code.

AREA 3: SOCIAL/ETHICAL ISSUES AND PROFESSIONAL RESPONSIBILITY

This content area include social and ethical issues associated with the computing profession and career pathways and the role of

professional bodies.

AREA 4: COMPUTING OPTION

In the Computing Option learners pursue an area of interest in more depth. This can include development of a software application to

meet a client need, or application of CS principles to a new programming environment or tool.

Rationale

Computer Science involves the study of the processes underlying the storage, transformation and transfer of data. It includes both the

theoretical study of algorithms and the practical problems involved in implementing them, usually via a programming language.

Computer Science can be a starting point for further education in Information and Communications Technology (ICT) or engineering or a

preparation for the vast range of careers that require efficient and effective use of ICT and computational thinking. Predicted ICT skills

shortages, both within Australia and globally, suggest that professionals with a computer science background will be in demand. In

addition, computer science skills are a major driver of economic growth and productivity (ACS/DAE, Australia’s Digital Pulse Developing

the digital workforce to drive growth in the future 2016, Australian Computer Society/Deloitte Access Economics, Sydney, NSW).

https://www.tasc.tas.gov.au/
https://www.tasc.tas.gov.au/
https://www.tasc.tas.gov.au/
https://www.tasc.tas.gov.au/students/courses/a-z/

Aims

Computer Science aims to develop learners’:

ability to identify, analyse and design algorithms (sets of instructions to complete a task)

understanding of programming concepts in a formal computer programming language

skill in the design, documentation, analysis, testing and evaluation of computer programs

understanding of Boolean logic, binary data, representation of data types and their relationship to underlying digital hardware

familiarity with high and low-level programming languages

awareness of the social, ethical and professional aspects of computer science.

Learning Outcomes

On successful completion of this course, learners will be able to:

1. apply the techniques of computer science to a range of problems and appreciate limitations of using algorithmic solutions

2. design, document, compare, evaluate and refine algorithmic and programming solutions to a range of problems expressed in a

variety of forms

3. describe software and hardware aspects of computing, and explain their operation with the underpinning mathematics and

science of the discipline

4. describe interaction between people and computers, and implications for software design

5. identify career and further education opportunities that make use of computer science skills, knowledge and understanding

6. describe societal consequences of technological solutions and the professional and ethical responsibility of people working

within this field

7. manage their own learning, including time management and organisation skills

8. develop Java applications.

Access

Learners need to be able to operate a computer in order to complete a range of computer programming exercises, and access

documentation and other relevant material on the internet.

Pathways

It is expected that learners entering this course would have well-developed ICT, numeracy and literacy skills. Experience in problem

solving, including logical and critical thinking, would be advantageous.

Learners wishing to pursue a computing career could use this as a starting point to study a degree at University, or VET Certificate IV, or

Diploma, including combined Diploma/Degree courses. These courses may focus on multimedia and the internet, artificial intelligence,

mobile and ubiquitous computing, systems and networks, computer security, distributed systems, software engineering or programming

languages. Learners entering the workforce should expect to undergo further education and training.

Recent research shows many people in ICT careers are working in industries outside of ICT itself (ACS/DAE 2016, p. 3). An increasing

number of careers involve computer science, and students may find this course useful in other fields such as: law; medical research;

engineering; logistics; military; tourism; commerce, and management.

Resource Requirements

All learners will require access to computers with the following minimum requirements:

access to the internet, including web and email

access to a computer on which they can install and run applications

Java Development Kit and an appropriate environment for creating, editing and running programs

word processing facilities

cloud or local file storage

printing.

Course Size And Complexity

This course has a complexity level of 3.

At Level 3, the learner is expected to acquire a combination of theoretical and/or technical and factual knowledge and skills and use

judgment when varying procedures to deal with unusual or unexpected aspects that may arise. Some skills in organising self and others

are expected. Level 3 is a standard suitable to prepare learners for further study at tertiary level. VET competencies at this level are often

those characteristic of an AQF Certificate III.

This course has a size value of 15.

Course Requirements

All content areas of Computer Science are compulsory. While the order of study is not prescribed, learners will negotiate with providers

to ensure that relevant sections of the three major content areas (Problem Solving and Programming, Computer Fundamentals and

Computer Limitations, and Social/Ethical Issues and Professional Responsibility) have been undertaken prior to beginning the Computing

Option. It is not envisaged that the following components be taught as isolated topics but rather as an integrated body of knowledge.

All listed content is compulsory.

Course Content

AREA 1: PROBLEM SOLVING AND PROGRAMMING (70 HOURS)

Algorithms and programming solutions to a variety of problems are designed and expressed in a variety of forms. Students will develop

skills in understanding the problem, exploring problem solving strategies, design and creation of a solution. Algorithms that require

mathematical solutions, such as those involving summation and searching, are investigated.

A fundamental understanding of the Software Development Life Cycle (design, code, test, evaluate and refine) is required. Practical

activities need to provide experience for learners in all stages of this cycle and to develop an understanding of the importance of analysis

and design before beginning to code. Programs should adhere to established programming styles and significant programs should have

formal documentation.

ALGORITHM DESIGN AND PROBLEM SOLVING

This includes

exploration of a range of problems - some problems cannot be reduced to an algorithm as they have no clear rules, some

problems have clear rules but are difficult to put into algorithms because they have many possible responses to rules (e.g. the

game of Go). Other problems are those for which rules are still to be discovered such as natural language processing and how to

cure certain diseases. The course focuses on problems that can be represented algorithmically. This section should provide a link

between Computer Science and other disciplines

exploration of forms of problem solving – algebraic, algorithmic, trial and error

the specific requirements of a problem are determined from problem definitions given in a variety of forms

examination of different solutions to the same problem (critical evaluation, most efficient, reliable)

problem deconstruction/decomposition – problems need to be broken down into a number of well-defined steps

visualisation of solution – use of diagrams to illustrate the solution

expression of the solution to the problem – use an initially/when model for event-driven solutions.

PROGRAMMING

Learners learn the fundamentals of Object-oriented programming and event driven programming.

Learners write a variety of Java applications using the following Java features

primitive types (promotion and casting)

arithmetic and logic operators (+, -, *, / , %, &&, !, ||), order of operations, and some mathematical functions -such as

(Math.pow(), Math.random())

classes and information hiding

graphics (drawing, filling)

pre-defined objects, including arrays and strings, and modifying and creating objects

control-flow (selection using if else/switch, iteration using for/while)

methods, parameters and scope

GUIs (widgets including buttons, text fields, labels)

events and listeners using the AWT library.

A key component of programming will be an emphasis on good programming practice. Programs need to adhere to a defined set of

standards including good variable name choice, commenting, and indenting. Learners will be introduced to examples of programming

style guides, and the reasons why organisations often require their programmers to comply with a specific style.

A key element of this topic is designing applications for genuine solutions. Fundamental notions of HCI (Human Computer Interaction) are

introduced.

TESTING AND EVALUATION

In this section

a structured approach to testing is followed. Testing plans are written from program specifications in the absence of a program

tracing as a means of debugging programs is introduced, including both hand and automated tracing

self-review, peer review and external review (including by end users) is used to evaluate applets and applications and identify

future refinements.

DOCUMENTATION

Programs of significant size should be accompanied by both technical and user documentation. Technical documentation includes

internal comments of programs. User documentation provides a description of the program’s purpose, operating instruction and

appropriate online help.

Programming style guides could include (but are not limited to) the original Oracle Java Code Conventions, the Google Java Style Guide

and others such as the JavaRanch Style Guide.

The general value of programming style is conveyed in publications such as Stanford’s introductory programming style guide and the

Harvard CS50 Style Guide (which is not designed for Java but outlines the reasons for style decisions). Documentation can take different

forms but it is recommended that, where appropriate, technical documentation within programs be undertaken in accordance with the

Javadoc “documentation comments” format.

AREA 2: COMPUTER FUNDAMENTALS AND COMPUTER LIMITATIONS (40 HOURS)

In order to come to an understanding of the limitations and possibilities for the use

of computer technology into the future, learners need to understand computer

architectures, and the role of the operating system.

Areas to be covered:

binary number system for whole number and fraction and conversions to

decimal and hexadecimal

basic binary arithmetic (addition only)

two's complement representation and arithmetic (addition and subtraction only)

representation of primitive data types (integer, char, boolean, float)

representation of non-numeric data using hexadecimal where appropriate (e.g.

characters, colours, instructions)

implications of representation of floating point numbers for accuracy of

calculations

representation of arrays as well as sound and picture files

Boolean operators (AND, OR, NOT)

logic gates, basic computer circuits and the flip-flop

using truth tables, Karnaugh maps and simplifications using the specified list of

logic laws to design logic circuits

computer architecture – the fundamental components of a computer in the von

Neumann architecture and the relevant historical context

machine code and its relationship to high level languages such as Java

the machine cycle required to add two numbers (fetch, decode, execute)

operating systems and the role of the JVM

newer technologies and their relationship to basic computer architecture.

AREA 3: SOCIAL / ETHICAL ISSUES AND PROFESSIONAL RESPONSIBILITY (10

HOURS)

http://www.oracle.com/technetwork/java/codeconventions-150003.pdf
https://google.github.io/styleguide/javaguide.html
http://www.javaranch.com/style.jsp
http://web.stanford.edu/class/archive/cs/cs106a/cs106a.1146/styleguide.shtml
https://manual.cs50.net/style/
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html

Computer professionals have specialised knowledge and often have positions with

authority. For this reason, they may have a significant impact on society. There is a

duty to exercise that power responsibly.

Areas to be covered:

career pathways, skills and education required

the role of professional associations and codes of ethics

responsibilities of the computing professional in the workplace

responsibilities of those in positions of authority

examples and consequences of technological errors, such as software bugs

the consequences of good and bad user interface design, and the obligation to

design for all users (for example, http://www.australia.gov.au/accessibility.)

AREA 4: COMPUTING OPTION (30 HOURS)

The skills gained in Computer Science are used to explore an area of interest in more

depth. The option chosen must enable learners to demonstrate problem solving skills,

research, and technical communication skills. In addition, learners must adhere to

ethical and professional standards as they are prescribed in the course. The option

product will be used to assess both Criteria 8 and 9 and either Criterion 1 or 6, along

with at least one of the remaining criteria.

Providers may wish to direct the nature of the Computing Option based on the

interests, needs and skills of individual learners.

Suggested topics include (but are not limited to):

production of a Java application for a client following the software development

lifecycle

Object-oriented programming in other languages

game development in a suitable environment

exploration of network programming

programming for mobile devices

Media Computation

cryptography, compression and security

artificial intelligence and machine learning

human-computer interaction

computer forensics

ethical and legal aspects of computer science

application of computer science principles to another field (e.g. life sciences,

psychology, law)

http://www.australia.gov.au/accessibility

big data and data science

exploration of Java libraries

exploration of alternative Java programming environments (e.g. Greenfoot,

Robocode)

programming LEGO® robots using LeJOS

programming of embedded systems and microcontrollers

digital electronics.

Note that the topic chosen must provide the learner with opportunity for the assessment of the Criteria stated above.

Work Requirements

AREA 1: WORK REQUIREMENTS

The equivalent of:

Assessment tasks (10 programming tasks). Program development with accompanying explanation of specific aspects of the Java

language.

Assessment task – Algorithms (approximately 2 hours)

Assessment task - SDLC (approximately 2 hours)

Fully documented programs (2 programs). These may form part of the Java language assessment tasks.

AREA 2: WORK REQUIREMENTS

The equivalent of:

Assessment task - Logic laws, truth tables and Karnaugh maps (approximately 2

hours)

Assessment task - Number representation(approximately 2 hours)

Assessment task - Data representation (approximately 2 hours)

Assessment task - TOY machine (approximately 2 hours)

These assessment tasks would typically include one or more problems to be solved,

along with explanation of some aspect of the topic.

AREA 3: WORK REQUIREMENTS

The equivalent of:

Assessment task - Social issues, professionalism and ethics (1000 words)

AREA 4: WORK REQUIREMENTS

Option Product: documented program, or report on investigation (4000 words or

equivalent).

Assessment

Criterion-based assessment is a form of outcomes assessment that identifies the extent of learner achievement at an appropriate end-

point of study. Although assessment – as part of the learning program – is continuous, much of it is formative, and is done to help

learners identify what they need to do to attain the maximum benefit from their study of the course. Therefore, assessment for

summative reporting to TASC will focus on what both teacher and learner understand to reflect end-point achievement.

The standard of achievement each learner attains on each criterion is recorded as a rating ‘A’, ‘B’, or ‘C’, according to the outcomes

specified in the standards section of the course.

A ‘t’ notation must be used where a learner demonstrates any achievement against a criterion less than the standard specified for the ‘C’

rating.

A ‘z’ notation is to be used where a learner provides no evidence of achievement at all.

Providers offering this course must participate in quality assurance processes specified by TASC to ensure provider validity and

comparability of standards across all awards. For further information, see TASC's quality assurance and assessment processes.

Internal assessment of all criteria will be made by the provider. Providers will report the learner’s rating for each criterion to TASC.

TASC will supervise the external assessment of designated criteria which will be indicated by an asterisk (*). The ratings obtained from the

external assessments will be used in addition to internal ratings from the provider to determine the final award.

Quality Assurance Process

The following processes will be facilitated by TASC to ensure there is:

a match between the standards of achievement specified in the course and the skills and knowledge demonstrated by learners

community confidence in the integrity and meaning of the qualification.

TASC gives course providers feedback about any systematic differences in the relationship of their internal and external assessments and,

where appropriate, seeks further evidence through audit and requires corrective action in the future.

External Assessment Requirements

The external assessment for this course will comprise:

a written examination assessing criteria: 1, 2, 3, 4 and 5.

For further information see the current external assessment specifications and guidelines for this course available in the Supporting

Documents below.

Criteria

The assessment for Computer Science Level 3 will be based on the degree to which the learner can:

* = denotes criteria that are both internally and externally assessed

1. design, extend and improve algorithmic solutions to a range of problems*

2. create programs in a high level programming language*

3. use appropriate objects in the design of programs*

4. describe and apply knowledge of computer architecture*

5. analyse how data are represented and stored*

6. apply the software development life cycle to a variety of problems

7. analyse and apply societal, professional and ethical responsibilities

8. apply personal skills to plan, organise and complete activities

9. communicate technological information

https://www.tasc.tas.gov.au/providers/quality-assurance/
https://www.tasc.tas.gov.au/students/exams/

Standards

Criterion 1: design, extend and improve algorithmic solutions to a range of
problems

This criterion is both internally and externally assessed.

Rating 'A'

In addition to the standards for a 'C' and a 'B' rating, the learner:

Rating 'B'

In addition to the standards for a 'C' rating, the learner:

Rating 'C'

The learner:

Rating A Rating B Rating C

explains the logic of complex algorithms and

predicts their output or behaviour under a full

range of input conditions

explains the logic of complex algorithms

and predicts their output or behaviour

for a given set of data

explains the logic of simple

algorithms and predicts their

output or behaviour for a given

set of data

creates complete, complex algorithms from

specifications

extends a section of an existing algorithm

to add new required functionality

modifies a small section of an

existing algorithm to meet

stated requirements

when provided with a broad description of a

required applications, develops a comprehensive

algorithm for implementing that application and

describes the application’s interface

when provided with a faulty or

incomplete section of a complex

algorithm, identifies any missing events

or components and uses given advice to

repair or complete the algorithm

when provided with a faulty or

incomplete section of a simple

algorithm, uses given advice to

repair or complete the algorithm

implements detailed, efficient and well-structured

algorithms with multiple complex combinations of

basic programming constructs. The algorithms

include features such as sophisticated input

validation and exception handling

creates algorithms that include complex

combinations of basic programming

constructs such as sequence, selection

and iteration

creates algorithms for simple

situations that include basic

programming constructs such as

sequence, selection and

iteration

applies the appropriate design theory to a given

problem, explores a range of possible solutions,

evaluating each, and determines the best solution

for an unfamiliar problem. The best solution is

expressed in terms of an algorithm.

given an unfamiliar computing task,

applies top-down design in order to

identify the required subtasks and

develops these into an algorithm for the

task.

develops a valid algorithm as a

solution to an unfamiliar

computing task in which

subtasks have been identified.

Criterion 2: create programs in a high level programming language

This criterion is both internally and externally assessed.

Rating 'A'

In addition to the standards for a 'C' and a 'B' rating, the learner:

Rating 'B'

In addition to the standards for a 'C' rating, the learner:

Rating 'C'

The learner:

Rating A Rating B Rating C

implements all required language constructs and

interactions between components by writing and

makes informed and reasoned

statements about the outcome of

makes informed statements about

outcome of commonly used

analysing Java code, and includes methods,

parameters and scope of variables

major features of the Java language features of the Java language

traces sections of programs, designs suitable trace

tables and uses appropriate and informative test data

(for example, critical user input values)

traces sections of programs and

designs suitable trace tables

traces sections of programs using

specified values

analyses complex and extended sections of code to

determine their purpose

uses appropriate strategies to

determine the purpose of sections

of code

examines small sections of

 programs to determine their

purpose

produces complex code using rigorous code

style/conventions and full user, technical and in-code

documentation

produces complex code using formal

style/conventions and

documentation

produces code using basic

style/conventions and

documentation

creates detailed, efficient and well-structured Java

code with multiple complex combinations of

programming constructs.

creates Java code that includes

complex combinations of basic

programming constructs.

creates Java code that include

basic programming constructs.

Criterion 3: use appropriate objects in the design of programs

This criterion is both internally and externally assessed.

Rating 'A'

In addition to the standards for a 'C' and a 'B' rating, the learner:

Rating 'B'

In addition to the standards for a 'C' rating, the learner:

Rating 'C'

The learner:

Rating A Rating B Rating C

writes correctly functioning programs using

predefined and self-designed objects

writes correctly functioning programs

using a variety of predefined objects

 writes correctly functioning

programs using a limited number of

predefined objects

correctly manipulates values in objects they

have defined

correctly manipulates values in complex

objects (e.g. arrays)

correctly manipulates values in

simple objects (e.g. strings)

defines a new method for a given object, to

meet a specification (e.g. to return a result

based on numeric, logical or string operations

on stored values within that object)

correctly manipulates stored values for

an object they declare and instantiate,

given its class definition

correctly manipulates stored values

for an object, given the method

definition for that object

given specifications for an object, creates a class

definition for that object.

given definition for a previously unseen

object, traces the results of applying the

object’s methods on the values stored

within that object.

traces results of applying an

predefined object’s methods on the

values stored within that object, and

determines outputs.

Criterion 4: describe and apply knowledge of computer architecture

This criterion is both internally and externally assessed.

Rating 'A'

In addition to the standards for a 'C' and a 'B' rating, the learner:

Rating 'B'

In addition to the standards for a 'C' rating, the learner:

Rating 'C'

The learner:

Rating A Rating B Rating C

interrelates operating systems, machine

architecture, fetch, code and execute cycle,

machine code, binary, logical expressions

and digital circuits

analyses the information flow within a

computer, and relates hardware functions to

higher order language constructs by converting

between machine code and Java

describes basic components of a

computer and their function

analyses and provides extensive justification

of limitations that computer architecture

imposes on computing tasks being

performed

describes and gives some justification of

limitations that computer architecture imposes

on computing tasks being performed

describes limitations that

computer architecture imposes

on computing tasks being

performed

accurately creates complex logic circuits

utilising truth tables, Karnaugh maps, logical

laws and logic statements expressed in

everyday English

accurately creates simple logic circuits utilising

truth tables, Karnaugh maps, logical laws and

logic statements expressed in everyday English

draws simple logic circuits that

correctly represent Boolean

expressions and traces them

with values

relates TOY machine language operations to

their equivalent in Java

completes simple programs in the TOY machine

language

traces simple programs in the

TOY machine language

analyses relationships between machine

language and machine architecture.

describes the significance of the JVM and its

relationship to computer architecture.

describes the role of the Java

Virtual Machine (JVM).

Criterion 5: analyse how data are represented and stored

This criterion is both internally and externally assessed.

Rating 'A'

In addition to the standards for a 'C' and a 'B' rating, the learner:

Rating 'B'

In addition to the standards for a 'C' rating, the learner:

Rating 'C'

The learner:

Rating A Rating B Rating C

evaluate implications of the

representation of more complex data

types within a computer system and

the associated limitations

analyse implications of the representation of all

primitive data types within a computer system

and the limitations of each

describes the representation of

primitive data types in the computer

evaluates characteristics of complex

data types and storage issues

associated with more complex data

structures

explains the special issues associated with

floating point representation in the computer

and how to deal with them in a program

describes and implements calculation

and storage situations where the

limitations of the representation of

integers has an effect

analyses low-level data storage

situations, performs calculations and

applies knowledge of data

representation to new situations.

performs binary arithmetic, converts between

number bases, and can demonstrate

relationships between word length and the

range of values that can be represented.

accurately performs basic arithmetic in

binary and two's complement

representation.

Criterion 6: apply the software development life cycle to a variety of problems

Rating 'A'

In addition to the standards for a 'C' and a 'B' rating, the learner:

Rating 'B'

In addition to the standards for a 'C' rating, the learner:

Rating 'C'

The learner:

Rating A Rating B Rating C

writes well designed complex programs using

the SDLC which meet the specifications using

programming standards with an appropriate

user interface

follows the Software Development Life

Cycle (SDLC) to write complex programs

that meet the specifications using the

appropriate programming standards

writes straightforward programs which

meet specifications using appropriate

programming standards and a range of

programming constructs

evaluates possible programming constructs

and resources, and chooses the most

appropriate

uses appropriate programming

constructs and accesses relevant

resources

accesses and applies core support

resources to assist in writing programs

specifies comprehensive testing plans before

a program is written, uses both hand and

automated tracing to debug programs and

refines programs in response to the testing

specifies detailed testing plans before a

program is written and makes some

program revisions after testing

tests programs against a plan and

assesses how well the programs

perform

tests and evaluates options for the user

interface for a solution, and selects the most

appropriate.

explores options for the user interface

with regard to the specified problem.

correctly follows a given set of design

principles for the user interface.

Criterion 7: analyse and apply societal, professional and ethical responsibilities

Rating 'A'

In addition to the standards for a 'C' and a 'B' rating, the learner:

Rating 'B'

In addition to the standards for a 'C' rating, the learner:

Rating 'C'

The learner:

Rating A Rating B Rating C

analyses roles and responsibilities of a range of

occupations or careers (including those outside

of core computing careers) and evaluates ways in

which computer science could contribute to

them now and in the future

compares and analyses a variety of

occupations involving computer

science, including roles and the

responsibilities of people working

within these occupations

describes a variety of occupations

involving computer science, including

the roles and the responsibilities of

people working within these

occupations

applies a professional code of conduct to their

own practice (e.g. considers the impact of their

own programs on privacy, respects intellectual

property, considers the role of their work in

enhancing the lives of others)

given a particular scenario, identifies

the potential for misuse and relates

this potential to professional

organisations and codes of ethics

identifies relevant professional

organisations and interprets codes of

ethics

given a particular scenario, identifies and justifies

strategies to be put in place to reduce potential

risks from security breaches, user errors and

programming errors

applies knowledge of program design

and testing to minimise risk of

potential technological errors

gives examples of technological

errors and the consequences of the

errors across a range of areas

selects and applies appropriate standards and

conventions when developing own software

products, and incorporates user testing with a

diverse user group to further inform design

decisions.

analyses good and bad user interface

design and the impact on users from a

diverse range of abilities and

backgrounds.

describes purpose and nature of

standards and the need to comply

with standards (for example, in

relation to interface design and

accessibility).

Criterion 8: apply personal skills to plan, organise and complete activities

The learner:

Rating A Rating B Rating C

proposes and negotiates measurable,

achievable and realistic complex goals

proposes and negotiates measurable,

achievable and realistic goals

proposes and negotiates achievable and

realistic goals

identifies time, resources and equipment

needed to complex projects, and develops

a formal, systematic and coherent project

plan

identifies time, resources and equipment

needed to complete complex projects,

and develops and employs a formal,

coherent project plan

identifies time, resources and equipment

needed to complete simple projects, and

develops and employs a project plan

meets specified/negotiated timelines and

thoroughly addresses all project or task

requirements with a high degree of

accuracy

meets specified/negotiated timelines and

addresses all project or task

requirements

meets specified/negotiated timelines and

addresses key project or task

requirements

reflects - orally and in writing - on

progress towards meeting goals and

timelines; critically evaluates progress and

plans effective future actions.

reflects - orally and in writing - on

progress towards meeting goals and

timelines; analyses progress to plan

future actions.

reflects - orally and in writing - on

progress towards meeting goals and

timelines, articulating some ways in which

goals may be met in the future.

Criterion 9: communicate technological information

In relation to the study of computer science, the learner:

Rating A Rating B Rating C

selects, constructs and uses appropriate

written, oral, multimodal and mathematical

representations to accurately and effectively

convey meaning, adapting representations to

specific audiences and purposes

selects, constructs and uses appropriate

written, oral, multimodal and

mathematical representations to

produce clear responses for given

audience

uses and constructs written, oral,

multimodal and mathematical

representations as directed that

address the basic intent of a question

or issue

communicates complex ideas and

explanations coherently, selecting and

consistently using appropriate language

conventions for specific audiences and

purposes (within technical, user and in-code

documentation)

communicates ideas and explanations

clearly, selecting and consistently using

appropriate language conventions

(within technical, user and in-code

documentation)

communicates basic ideas and

explanations clearly, correctly using

appropriate language conventions

(within technical, user and in-code

documentation)

clearly differentiates the information, images,

ideas and words of others from the learner’s

own

clearly differentiates the information,

images, ideas and words of others from

the learner’s own

differentiates the information, images,

ideas and words of others from the

learner’s own

referencing conventions and methodologies

are followed with a high degree of accuracy

referencing conventions and

methodologies are followed correctly

referencing conventions and

methodologies are generally followed

correctly

creates appropriate, well-structured

reference lists/ bibliographies.

creates appropriate, structured

reference lists/bibliographies.

creates appropriate reference

lists/bibliographies.

Qualifications Available

Computer Science Level 3 (with the award of):

This is the range of awards that learner can achieve. The full range is five awards:

EXCEPTIONAL ACHIEVEMENT

HIGH ACHIEVEMENT

COMMENDABLE ACHIEVEMENT

SATISFACTORY ACHIEVEMENT

PRELIMINARY ACHIEVEMENT

Award Requirements

The final award will be determined by the Office of Tasmanian Assessment, Standards and Certification from 14 ratings (9 from the

internal assessment, 5 from external assessment).

The minimum requirements for an award in Computer Science Level 3 are as follows:

EXCEPTIONAL ACHIEVEMENT (EA)

12 ‘A’, 2 ‘B’ ratings (4 ‘A’, 1 ‘B’ from external assessment)

HIGH ACHIEVEMENT (HA)

6 ‘A’, 6 ‘B’, 2 ‘C’ ratings (2 ‘A’, 2 ‘B’, 1 ‘C’ from external assessment)

COMMENDABLE ACHIEVEMENT (CA)|

8 ‘B’, 5 ‘C’ ratings (2 ‘B’, 2’C’ ratings from external assessment)

SATISFACTORY ACHIEVEMENT (SA)

12 ‘C’ ratings (3 ‘C’ from external assessment)

PRELIMINARY ACHIEVEMENT (PA)

6 ‘C’ ratings

A learner who otherwise achieves the ratings for a CA (Commendable Achievement) or SA (Satisfactory Achievement) award but who fails

to show any evidence of achievement in one or more criteria (‘z’ notation) will be issued with a PA (Preliminary Achievement) award.

Course Evaluation

The Department of Education’s Curriculum Services will develop and regularly revise the curriculum. This evaluation will be informed by

the experience of the course’s implementation, delivery and assessment.In addition, stakeholders may request Curriculum Services to

review a particular aspect of an accredited course.

Requests for amendments to an accredited course will be forwarded by Curriculum Services to the Office of TASC for formal

consideration.

Such requests for amendment will be considered in terms of the likely improvements to the outcomes for learners, possible

consequences for delivery and assessment of the course, and alignment with Australian Curriculum materials.

A course is formally analysed prior to the expiry of its accreditation as part of the process to develop specifications to guide the

development of any replacement course.

Course Developer

The Department of Education acknowledges the significant leadership of Mr Bruce Stack, Mr Rob Torok, Mr Grant MacDonald and Dr Ken

Price in the development of this course.

Expectations Defined By National Standards

There are no statements of national standards relevant to this course.

Accreditation

The accreditation period for this course has been renewed from 1 January 2019 until 31 December 2021.

During the accreditation period required amendments can be considered via established processes.

Should outcomes of the Years 9-12 Review process find this course unsuitable for inclusion in the Tasmanian senior secondary

curriculum, its accreditation may be cancelled. Any such cancellation would not occur during an academic year.

Version History

Version 1 – Accredited on 30 July 2017 for use from 1 January 2018. This course replaces Computer Science (ITC315113) that expired on

31/12/2017.

Accreditation renewed on 22 November 2018 for the period 1 January 2019 until 31 December 2021.

Version 2 - Accreditation renewed on 14 July 2021 for the period 1 January 2022 until 31 December 2023. Removal of reference to Java

applets, Java applications now compulsory. See Learning Outcomes, Content (Programming and Area 4 Option), and 'A' rating descriptor

for Criterion 1, Element 3).

Appendix

REFERENCES

ACS/DAE, Australia’s Digital Pulse Developing the digital workforce to drive growth in the future 2016, Australian Computer

Society/Deloitte Access Economics, Sydney, NSW.

Viewed Oct 2016, http://www2.deloitte.com/content/dam/Deloitte/au/Documents/Economics/deloitte-au-economics-digital-pulse-2016-

acs-110316.pdf

http://www2.deloitte.com/content/dam/Deloitte/au/Documents/Economics/deloitte-au-economics-digital-pulse-2016-acs-110316.pdf
http://www2.deloitte.com/content/dam/Deloitte/au/Documents/Economics/deloitte-au-economics-digital-pulse-2016-acs-110316.pdf

Line Of Sight

Learning Outcome Criterion/ia Criteria Elements Content Content

 · apply the techniques of computer science to a

range of problems and appreciate the limitations of

using algorithmic solutions

 1, 2 1E1, 1E2, 1E3, 1E4, 1E5, 2E1,

2E5

 Problem Solving and

Programming

 · describe the interaction between people and

computers, and the implications for software design

 6, 7 6E4,7E3, 7E4 Social Ethical Issues and

Professional

Responsibility

 · design algorithmic, programming and

technological solutions to a range of problems

expressed in a variety of forms

 1, 2, 3, 6 1E1, 1E2, 1E3, 1E4, 1E5, 2E1,

2E2, 2E3, 2E4, 2E5, 3E1, 3E2,

3E3, 3E4, 6E1, 6E2, 6E3, 6E4

 Problem Solving and

Programming

 · compare, evaluate and refine algorithmic and

programming solutions

 1, 2, 3, 6 1E1, 1E2, 1E3, 1E4, 1E5, 2E1,

2E2, 2E3, 2E4, 2E5, 3E1, 3E2,

3E3, 3E4, 6E1, 6E2, 6E3, 6E4

 Problem Solving and

Programming

 · describe software and hardware aspects of

computing, and explain their operation with the

underpinning mathematics and science of the

discipline

 4, 5 4E1, 4E2, 4E3, 4E4, 4E5, 5E1,

5E2, 5E3

 Computer

Fundamentals and

Computer Limitations

 · use a variety of technological resources such as

online libraries and technical websites

 7, 9 7E1, 7E2, 7E3, 7E4, 9E3, 9E4 Social Ethical Issues and

Professional

Responsibility

 · describe societal consequences of technological

solutions and the professional responsibility of

people working within this field

 7 7E1, 7E2, 7E3, 7E4 Social Ethical Issues and

Professional

Responsibility

 · provide effective communication to a range of

stakeholders about technical problems and their

solutions

9 9E1, 9E2, 9E3, 9E4 Problem Solving and

Programming

 · manage their own learning, including time

management and organisation skills

 8 8E1, 8E2, 8E3, 8E4 Computing Option

 · identify career and further education

opportunities that make use of computer science

skills, knowledge and understanding

 7 7E1, 7E2 Social Ethical Issues and

Professional

Responsibility

PDF generated on: 2025-07-02 10:36:18 AEST

https://www.tasc.tas.gov.au/

Supporting documents including external assessment material

 ITC315118 Information Booklet 2018.pdf (2018-10-31 11:02am AEDT)

 ITC315118 Computer Science TASC Exam Paper 2018.pdf (2018-12-09 10:02am AEDT)

 ITC315118 - Assessment Panel Report 2018.pdf (2019-02-27 09:28am AEDT)

 ITC315118 Computer Science TASC Exam Paper 2019.pdf (2019-11-18 08:45am AEDT)

 ITC315118 Assessment Report 2019.pdf (2020-01-24 02:56pm AEDT)

 ITC315118 Computer Science TASC Exam Paper 2020.pdf (2020-11-16 10:52pm AEDT)

 ITC315118 Assessment Report 2020.pdf (2021-01-18 10:32am AEDT)

 ITC315118 Computer Science TASC Exam Paper 2021.pdf (2021-11-20 04:36pm AEDT)

 ITC315118 Assessment Report 2021.pdf (2022-01-24 12:56pm AEDT)

 ITC315118 Computer Science External Assessment Specifications.pdf (2022-04-07 03:27pm AEST)

 TASC ITC315118 Computer Science Exemplar Questions 2022.pdf (2022-05-16 10:31am AEST)

 ITC315118 Computer Science TASC Exam Paper 2022.pdf (2022-11-18 05:28pm AEDT)

© 2025 TASC. All rights reserved.

https://www.tasc.tas.gov.au/
https://cma.education.tas.gov.au/api/Document/6382/ITC315118%20Information%20Booklet%202018.pdf
https://cma.education.tas.gov.au/api/Document/6382/ITC315118%20Information%20Booklet%202018.pdf
https://cma.education.tas.gov.au/api/Document/6383/ITC315118%20Computer%20Science%20TASC%20Exam%20Paper%202018.pdf
https://cma.education.tas.gov.au/api/Document/6383/ITC315118%20Computer%20Science%20TASC%20Exam%20Paper%202018.pdf
https://cma.education.tas.gov.au/api/Document/6384/ITC315118%20-%20Assessment%20Panel%20Report%202018.pdf
https://cma.education.tas.gov.au/api/Document/6384/ITC315118%20-%20Assessment%20Panel%20Report%202018.pdf
https://cma.education.tas.gov.au/api/Document/6385/ITC315118%20Computer%20Science%20TASC%20Exam%20Paper%202019.pdf
https://cma.education.tas.gov.au/api/Document/6385/ITC315118%20Computer%20Science%20TASC%20Exam%20Paper%202019.pdf
https://cma.education.tas.gov.au/api/Document/6386/ITC315118%20Assessment%20Report%202019.pdf
https://cma.education.tas.gov.au/api/Document/6386/ITC315118%20Assessment%20Report%202019.pdf
https://cma.education.tas.gov.au/api/Document/6387/ITC315118%20Computer%20Science%20TASC%20Exam%20Paper%202020.pdf
https://cma.education.tas.gov.au/api/Document/6387/ITC315118%20Computer%20Science%20TASC%20Exam%20Paper%202020.pdf
https://cma.education.tas.gov.au/api/Document/6388/ITC315118%20Assessment%20Report%202020.pdf
https://cma.education.tas.gov.au/api/Document/6388/ITC315118%20Assessment%20Report%202020.pdf
https://cma.education.tas.gov.au/api/Document/6389/ITC315118%20Computer%20Science%20TASC%20Exam%20Paper%202021.pdf
https://cma.education.tas.gov.au/api/Document/6389/ITC315118%20Computer%20Science%20TASC%20Exam%20Paper%202021.pdf
https://cma.education.tas.gov.au/api/Document/6390/ITC315118%20Assessment%20Report%202021.pdf
https://cma.education.tas.gov.au/api/Document/6390/ITC315118%20Assessment%20Report%202021.pdf
https://cma.education.tas.gov.au/api/Document/6391/ITC315118%20Computer%20Science%20External%20Assessment%20Specifications.pdf
https://cma.education.tas.gov.au/api/Document/6391/ITC315118%20Computer%20Science%20External%20Assessment%20Specifications.pdf
https://cma.education.tas.gov.au/api/Document/6392/TASC%20ITC315118%20Computer%20Science%20Exemplar%20Questions%202022.pdf
https://cma.education.tas.gov.au/api/Document/6392/TASC%20ITC315118%20Computer%20Science%20Exemplar%20Questions%202022.pdf
https://cma.education.tas.gov.au/api/Document/6393/ITC315118%20Computer%20Science%20TASC%20Exam%20Paper%202022.pdf
https://cma.education.tas.gov.au/api/Document/6393/ITC315118%20Computer%20Science%20TASC%20Exam%20Paper%202022.pdf
http://www.tas.gov.au/
http://www.tas.gov.au/

